skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cai, Yunfeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Gradient‐type iterative methods for solving Hermitian eigenvalue problems can be accelerated by using preconditioning and deflation techniques. A preconditioned steepest descent iteration with implicit deflation (PSD‐id) is one of such methods. The convergence behavior of the PSD‐id is recently investigated based on the pioneering work of Samokish on the preconditioned steepest descent method (PSD). The resulting non‐asymptotic estimates indicate a superlinear convergence of the PSD‐id under strong assumptions on the initial guess. The present paper utilizes an alternative convergence analysis of the PSD by Neymeyr under much weaker assumptions. We embed Neymeyr's approach into the analysis of the PSD‐id using a restricted formulation of the PSD‐id. More importantly, we extend the new convergence analysis of the PSD‐id to a practically preferred block version of the PSD‐id, or BPSD‐id, and show the cluster robustness of the BPSD‐id. Numerical examples are provided to validate the theoretical estimates. 
    more » « less